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ABSTRACT

Micro- and nanostructural 

design of magnetic mater-

ials is the most promising 

strategy for future high-

performance but rare earth-

lean permanent magnets. 

Exchange coupled compo-

sites combine materials 

with high magneto-

crystalline anisotropy and 

others with high spon-

taneous magnetization. It is 

still unclear, which 

nanostructural spatial 

distribution of these 

materials is advantageous 

for a high energy density.

We use a Convolutional 

Neural Network, trained by 

micromagnetic simulations, 

to predict the energy 

density from a given 

distribution. The neural 

network serves as a 

surrogate model for 

optimizing the spatial 

distribution and is retrained 

in an active learning cycle. 
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mation stored in 

16⨉16⨉16 matrix

   µ0Ms = 1.61 T

   Ax = 7.7 pJ/m

   Ku = 4.3 MJ/m3
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A cube with an edge length of 120 nm is divided into 

16 ⨉ 16 ⨉ 16 cuboid cells of 7.5 nm, each of which  can 

take the properties of either hard or so magnetic 

material. Aer further discretization into a �nite-

element mesh, a massively parallelized micromagnetic 

code[1] is used to compute the demagnetization curves 

of arbitrary phase distributions. e energy density 

product BHmax is extracted from the curve.

Micromagnetic simulations1

Key magnetic properties can be predicted from the 

magnetic phase distribution by a CNN.

Fast predictions and an active learning scheme can 

be used in an optimization framework to �nd bene-

�cial phase distributions.

e active learning optimization scheme found su-

perior phase distributions beyond kown ones, inclu-

ding the checkerboard pattern (see c   in Results).

Conclusion5
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Convolutional Neural Network2

A neural network was designed[3] to predict the energy 

density product BHmax of the magnet by a given phase 

distribution. e model was trained using both 

random phase distributions and speci�c distributions 

assumed to perform well. Aer tuning of hyper-

parameters, an R2-score of 95% was achieved for the 

unseen test set.

Optimization3

e Convolutional Neural Network is used as a surrogate model in an optimization loop to accelerate the search for 

the best spatial distribution of hard and so magnetic phases. An adapted binary search algorithm[2] is applied, with 

the maximization of BHmax as the objective function. e algorithm takes advantage of the gradients provided by the 

CNN to determine which cells should change material in order to enhance BHmax. Additionally, the CNN is used for a 

rapid evaluation of BHmax during optimization. 

e colored dots represent the validated designs 

proposed by the active learning scheme at different 

iterations. e best design is marked as b  .
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