Clean into the future
„No more harmful exhausts from cars!“ This desire to improve the quality of life in our cities has often been heard in recent weeks. The technology is available and intensive research is being carried out to improve the current systems. CO2 neutral mobility requires electricity from renewable sources. With a high share of wind and hydroelectric power, Austria has the best prerequisites. Smaller, lighter and more power "is a formula that also applies to electromobility and power generation. The stronger the magnet in the motor or generator, the smaller it can be dimensioned. Powerful magnets require critical materials. These are raw materials that are important for social development - but are limited and expensive. The Center for Integrated Sensor Systems at the Danube University Krems is a partner in international projects for the development of new magnetic materials without critical materials.
It sounds complicated, but it's almost like a computer game. The researchers at Technopol Wiener Neustadt use the high computing power of computer graphics cards to break down the magnet into millions of small "compass needles" and calculate how they align. These computer simulations provide important data to improve the magnets.
This work is supported by the European Union’s Horizon 2020 program under the project number 686056.
Details
Duration | 01/04/2016 - 30/09/2019 |
---|---|
Funding | EU |
Program |
H2020
|
Department | |
Principle investigator for the project (University for Continuing Education Krems) | Univ.-Doz.Dipl.-Ing.Dr. Thomas Schrefl |
Publications
Tsuchiura, H.; Yoshioka, T.; Novák, P.; Fischbacher, J.; Kovacs, A.; Schrefl, T. (2021). First-principles calculations of magnetic properties for analysis of magnetization processes in rare-earth permanent magnets". Science and Technology of Advanced Materials (STAM), Vol. 22, no. 1: 748-757
Kovacs, A.; Fischbacher, J.; Gusenbauer, M.; Oezelt, H.; Herper, H. C.; Vekilova, O. Y.; Nieves, P.; Arapan, S.; Schrefl, T. (2020). Computational design of rare-earth reduced permanent magnets. Engineering, 6: 148
Schönhöbel, A.M.; Madugundo, R.; Barandiarán, J.M.; Hadjipanayis, G.C.; Palanisamy, D.; Schwarz, T.; Gault, B.; Raabe, D.; Skokov, K.; Gutfleisch, O.; Fischbacher, J.; Schrefl, T. (2020). Nanocrystalline Sm-based 1:12 magnets. Acta Materialia, Vol. 200: 652-658
Kovacs, A.; Fischbacher, J.; Gusenbauer, M.; Oezelt, H.; Herper, H. C.; Vekilova, O. Yu.; Nieves, P.; Arapan, S.; Schrefl, T. (2019). Computational Design of Rare-Earth Reduced Permanent Magnets. Engineering, November 2019: in press
Nieves, P.; Arapan, S.; Maudes-Raedo, J.; Marticorena-Sánchez, R.; Del Brío, N. L.; Kovacs, A.; Echevarria-Bonet, C.; Salazar, D.; Weischenberg, J.; Zhang, H.; Vekilova, O. Yu.; Serrano-López, R.; Barandiaran, J. M.; Skokov, K.; Gutfleisch, O.; Eriksson, O.; Herper, H. C.; Schrefl, T.; Cuesta-López, S. (2019). Database of Novel Magnetic Materials for High-Performance Permanent Magnet Development. Computational Materials Science, 168: 188-202
Vekilova, O. Y.; Fayyazi, B.; Skokov, K. P.; Gutfleisch, O.; Echevarria-Bonet, C.; Barandiarán, J. M.; Kovacs, A.; Fischbacher, J.; Schrefl, T.; Eriksson, O.; Herper, H. C. (2019). Tuning the Magnetocrystalline Anisotropy of Fe3Sn by Alloying. Physical Review B, 99: 024421
Fischbacher, J.; Kovacs, A.; Gusenbauer, M.; Oezelt, H.; Exl, L.; Bance, S.; Schrefl, T. (2018). Micromagnetics of rare-earth efficient permanent magnets. Journal of Physics D: Applied Physics, Vol. 51, no. 19: 193002-193019
Bance, S.; Bittner, F.; Woodcock, T. G.; Schultz, L.; Schrefl, T. (2017). Role of twin and anti-phase defects in MnAl permanent magnets. Acta Materialia, 131: 48-56
Kovacs, A.; Fischbacher, J.; Oezelt, H.; Schrefl, T.; Kaidatzis, A.; Salikhov, R.; Farle, M.; Giannopoulus, G.; Niarchos, D. (2017). Micromagnetic Simulations for Coercivity Improvement Through Nano-Structuring of Rare-Earth-Free L10-FeNi Magnets. IEEE Transactions on Magnetics, 53(11): DOI: 10.1109/TMAG.2017.2701418
Nieves, P.; Arapan, S.; Schrefl, T.; Cuesta-Lopez, S. (2017). Atomistic spin dynamics simulations of the MnAl t-phase and its antiphase boundary. Physical Review B, 96(22): doi:10.1103/PhysRevB.96.224411
Lectures
Micromagnetic simulation of surface anisotropy effects in SmFe_12-type permanent magnets
JEMS2019 Joint European Magnetic Symposia, Uppsala, Schweden, 26/08/2019
Micromagnetic Simulation of Partially Ordered L1_0 FeNi Permanent Magnets
MANA 2018 - Micromagnetics: Analysis, Numerics, Applications, TU Wien, Resselgasse 4, 1040 Wien, Österreich, 08/11/2018
Simulation of permanent magnets across the length scales
Functional Materials Colloquium, TU Darmstadt, 26/10/2018
Computational design of rare-earth reduced permanent magnets
Rare-earth and future permanent magnets and their applications REPM2018, Beijing, China, 28/08/2018
Micromagnetic Simulation of Partially Ordered L1_0 FeNi Permanent Magnets
21st International Conference on Magnetism (ICM2018) Moscone Center, San Francisco, USA, 16/07/2018
Energy Barriers in Nano-structured Permanent Magnets
Conference on Mathematical Aspects of Materials Science, Portland Oregon, USA, 10/07/2018
Recent advances in micromagnetic modelling of permanent magnets
8th Forum of new materials, Perugia, Italy, 12/06/2018
Activation volume and structural defects in permanent magnets
Future perspectives on novel magnetic materials, Santorini, Greece, 01/06/2018
Micromagnetic Simulation of Partially Ordered L1_0 FeNi Permanent Magnets
Santorini Workshop Future Perspectives on Novel Magnetic Materials, Santorini Palace Hotel, Santorini, Griechenland, 30/05/2018
Microstructure optimization for permanent magnets
MRS Spring Meeting 2018, Phoenix, USA, 03/04/2018