Gusenbauer Markus

Projekte (Auszug Forschungs­datenbank)

Laufende Projekte

Towards the digital twin of a permanent magnet

Projektzeitraum: 01.02.2024–21.07.2027
Projektverantwortung (Universität für Weiterbildung Krems): Markus Gusenbauer
Fördergeber: Bundesländer (inkl. deren Stiftungen und Einrichtungen)

Zu Favoriten hinzufügen

Magnetism at interfaces: from quantum to reality

Projektzeitraum: 01.11.2022–31.03.2026
Projektverantwortung (Universität für Weiterbildung Krems): Markus Gusenbauer
Fördergeber: FWF

Zu Favoriten hinzufügen

Towards the digital twin of a permanent magnet

Projektzeitraum: 01.03.2022–28.02.2026
Projektverantwortung (Universität für Weiterbildung Krems): Markus Gusenbauer
Fördergeber: FWF

Zu Favoriten hinzufügen

Abgeschlossene Projekte

The Effect of Interfaces on Magnetisation Reversal in MnAl-C

Projektzeitraum: 01.10.2017–30.11.2020
Projektverantwortung (Universität für Weiterbildung Krems): Markus Gusenbauer
Fördergeber: FWF
Förderprogramm: DACH

Zu Favoriten hinzufügen

Publikationen (Auszug Forschungs­datenbank)

Ali, Q.; Fischbacher, J.; Kovacs, A.; Özelt, H.; Gusenbauer, M.; Moustafa, H.; Böhm, D.; Breth, L.; Schrefl, T. (2024). Defect manipulation for the coercivity enhancement of Nd-Fe-B permanent magnets. Physica B: Condensed Matter, Vol. 678: 415759

Gusenbauer, M.; Stanciu, S.; Kovacs, A.; Oezelt, H.; Fischbacher, J.; Zhao, P.; Woodcock, T. G.; Schrefl, T.; Stanciu S. (2024). Micromagnetic study of grain junctions in MnAl-C containing intergranular inclusions. Elsevier Journal of Magnetism and Magnetic Materials, Vol. 606: 172390

Kovacs, A.; Exl, L.; Kornell, A.; Fischbacher, J.; Hovorka, M.; Gusenbauer, M.; Breth, L.; Oezelt, H.; Yano, M.; Sakuma, N.; Kinoshita, A.; Shoji, T.; Kato, A.; Schrefl, T. (2024). Image-based prediction and optimization of hysteresis properties of nanocrystalline permanent magnets using deep learning. Journal of Magnetism and Magnetic Materials, Vol. 596: 171937

Moustafa, H.; Kovacs, A.; Fischbacher, J.; Gusenbauer, M.; Ali, Q.; Breth, L.; Hong, Y.; Rigaut, W.; Devillers, T.; Dempsey, N. M.; Schrefl, T.; Özelt, H. (2024). Reduced Order Model for Hard Magnetic Films. AIP Advances, Vol. 14, iss. 2: 025001-1 bis 025001-5

Kovacs, A.; Fischbacher, J.; Oezelt, H.; Kornell, A.; Ali, Q.; Gusenbauer, M.; Yano, M.; Sakuma, N.; Kinoshita, A.; Shoji, T.; Kato, A.; Hong, Y.; Grenier, S.; Devillers, T.; Dempsey, N. M.; Fukushima, T.; Akai, H.; Kawashima, N.; Miyake, T.; Schrefl, T. (2023). Physics-Informed Machine Learning Combining Experiment and Simulation for the Design of Neodymium-Iron-Boron Permanent Magnets with Reduced Critical-Elements Content. Frontiers in Materials 2023, Vol. 9: 1-19

Zhao, P.; Gusenbauer, M.; Oezelt, H.; Wolf, D.; Gemming, T.; Schrefl, T.; Nielsch, K.; Woodcock, T. G. (2023). Nanoscale chemical segregation to twin interfaces in t -MnAl-C and resulting effects on the magnetic properties. Journal of Materials Science & Technology, Vol. 134: 22-32

Ali, Q.; Fischbacher, J.; Kovacs, A.; Oezelt, H.; Gusenbauer, M.; Yano, M.; Sakuma, N.; Kinoshita, A.; Shoji, T.; Kato, A.; Schrefl, T. (2023). Benchmarking for systematic coarse-grained micromagnetics. In: HMM, proceedings in 13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023): 1, HMM, WIen

Gusenbauer, M.; Oezelt, H.; Kovacs, A.; Fischbacher, J.; Zhao, P.; Woodcock, T.-G.; Schrefl, T. (2023). Magnetization reversal of large granular magnetic materials. In: HMM, proceedings in 13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023): 1, HMM, Wien

Kovacs, A.; Fischbacher, J.; Oezelt, H.; Ali, Q.; Gusenbauer, M.; Schrefl, T. (2023). Finite Hex Element Adaptive Mesh Refinement of Demagnetizing Field Computation. In: HMM, proceedings in 13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023): 1, HMM, Wien

Oezelt, H.; Kovacs, A.; Breth, L.; Gusenbauer, M.; Schaffer, S.; Exl, L.; Schrefl. T. (2023). Machine learning based optimization of hard-/soft magnetic nanostructures. In: HMM, proceedings in 13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023): 1, HMM, Wien

Ali, Q.; Fischbacher, J.; Kovacs, A.; Oezelt, H.; Gusenbauer, M.; Moustafa, H.; Böhm, D.; Breth, L.; Schrefl, T. (2023). Defect Manipulation for the Coercivity Enhancement of Nd-Fe-B Permanent Magnets. SSRN, 2023: 4628986, Elesevier

Kovacs, A.; Exl, L.; Kornell, A.; Fischbacher, J.; Hovorka, M.; Gusenbauer, M.; Breth, L.; Oezelt, H.; Yano, M.; Sakuma, N.; Kinoshita, A.; Shoji, T.; Kato, A.; Schrefl, T. (2022). Conditional physics informed neural networks. Communications in Nonlinear Science and Numerical Simulation, Vol. 104: 106041

Kovacs, A.; Exlc, L.; Kornell, A.; Fischbacher, J.; Hovorka, M.; Gusenbauer, M.; Breth, L.; Oezelt, H.; Praetorius, D.; Suess, D.; Schrefl, T. (2022). Magnetostatics and micromagnetics with physics informed neural networks. Journal of Magnetism and Magnetic Materials, Vol. 548: 168951

Mohapatra, J.; Fischbacher, J.; Gusenbauer, M.; Xing, M. Y.; Elkins, J.; Schrefl, T.; Liu, J. P. (2022). Coercivity limits in nanoscale ferromagnets. Phys. Rev. B, Vol. 105, Iss. 21: 214431

Oezelt, H.; Qu, L.; Kovacs, A.; Fischbacher, J.; Gusenbauer, M.; Beigelbeck, R.; Praetorius, D.; Yano, M.; Shoji, T.; Kato, A.; Chantrell, R.; Winklhofer, M.; Zimanyi, G.; Schrefl, T. (2022). Full- Spin-Wave-Scaled Stochastic Micromagnetism for Mesh-Independent Simulations of Ferromagnetic Resonance and Reversal. npj Computational Materials, Vol. 8: 35

Zhao, P.; Gusenbauer, M.; Oezelt, H.; Wolf, D.; Gemming, T.; Schrefl, T.; Nielsch, K.; Woodcock, T. G. (2022). Nanoscale chemical segregation to twin interfaces in t-MnAl-C and resulting effects on the magnetic properties. Journal of Materials Science & Technology, Vol. 134: 22-32

Gusenbauer, M.; Kovacs, A.; Özelt, H.; Fischbacher, J.; Zhao, P.; Woodcock, T.G.;Schrefl, T. (2021). Insights into MnAl-C nano-twin defects by micromagnetic characterization. Journal of Applied Physics, 129(9): 093902

Gusenbauer, G.; Oezelt, H.; Fischbacher, J.; Kovacs, A.; Zhao, P.; Woodcock, T. G.; Schrefl, T. (2020). Extracting local switching fields in permanent magnets using machine learning. npj Computational Materials, 6: 89ff

Kovacs, A.; Fischbacher, J.; Gusenbauer, M.; Oezelt, H.; Herper, H. C.; Vekilova, O. Y.; Nieves, P.; Arapan, S.; Schrefl, T. (2020). Computational design of rare-earth reduced permanent magnets. Engineering, 6: 148

Arapan, S.; Nieves, P.; Cuesta-López, S.; Gusenbauer, M.; Oezelt, H.; Schrefl, T.; Delczeg-Czirjak, E. K.; Herper, H. C.; Eriksson, O. (2019). Influence of antiphase boundary of the MnAl t-phase on the energy product. Physical Review Materials, Vol. 3, iss. 6: 064412

Mehr laden
von

Vorträge (Auszug Forschungs­datenbank)

Machine Learning assisted interface analysis in MnAl-C

MSE 2024, 25.09.2024

Machine Learning-Enhanced Modelling of Large Magnetic Systems

IGTE Symposium 2024, 18.09.2024

Triple junction modeling with carbide inclusions in MnAl-C

International Conference on Magnetism, 03.07.2024

Micromagnetic modelling of soft-in-hard FeCo-FePt nanocomposites

13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023), 05.06.2023

Magnetization reversal of large granular magnetic materials

HMM 2023, 05.06.2023

Multiscaling strategies in computational magnet design

Going Green – CARE INNOVATION 2023, 11.05.2023

Coercivity analysis of twin boundaries with demagnetization negligible models in arbitrary field direction

JEMS 2022, 26.07.2022

Machine Learning for Relating Structure and Coercivity of Permanent Magnets

Virtual REPM 2021, 09.06.2021

Bridging the gap between biomedical applications and material sciences

3rd Workshop on Modelling of Biological Cells, Fluid Flow and Microfluidics, 11.02.2020

Ferromagnetic resonance simulations for stochastic Landau-Lifshitz-Gilbert equation

The Joint European Magnetic Symposia (JEMS), Uppsala, Sweden, 29.08.2019

Micromagnetic characterization of MnAl-C using trained neural networks

JEMS2019, Uppsala, Schweden, 29.08.2019

Automated micromagnetic simulations from Electron Backscatter Diffraction data

JEMS 2018, 05.09.2018

Sensing the blood cell damage in a magnetically actuated circular pump

IEEE Sensors 2017, 01.11.2017

Model-Based Design and Optimization of Microfluidic Systems for Gentle Cellular Perfusion

Sensor2017 Nürnberg, 31.05.2017

Immersed magnetic objects in biological fluids

2nd Workshop on Modelling of Biological Cells, Fluid Flow and Microfluidics, Vrátna, Slovakia, 08.02.2017

Keep the blood cells happy

2nd Workshop on Modelling of Biological Cells, Fluid Flow and Microfluidics, Vrátna, Slovakia, 06.02.2017

Rapid prototyping of miniature blood vessels

2nd Workshop on Modelling of Biological Cells, Fluid Flow and Microfluidics, Vrátna, Slovakia, 06.02.2017

Cell rheology in microfluidic perfusion: computational and experimental approach

MNE 2016, 21.09.2016

Simulation of magnetic particles in blood flow to improve failsafe particle detection of microspheres based detoxification system

Particles 2015, 28.09.2015

Automated microfluidic optimization to reduce blood cell activation

CFD in Medicine and Biology II, 01.09.2015

Mehr laden
von
Zum Anfang der Seite