Beschreibung
The meniscus is a fibrocartilaginous tissue around the tibial plateau in the knee joint. They mainly serve in adapting 50%-70% of the load by reducing contact pressure in the joint. They also function to provide lubrication thereby reducing friction during movement of the knee joint. Meniscus tears are common injuries either resulting from acute knee injury or from long-standing degenerative processes. Treatment options for meniscal injuries range from nonsurgical interventions such as physical therapy, to surgical interventions including meniscus repair, meniscectomy, meniscus allograft transplantation (MAT) or more recently the use of meniscal scaffolds. In cases where preservation is no longer a viable option, meniscal transplantation with implants or scaffolds is often considered to restore knee biomechanics. The implants or scaffolds distribute the load across the entire contact area when considered to total meniscectomy, and possibly delay the onset of early osteoarthritis (OA). We aim to fabricate extremely controllable 3D architectural scaffolds for an in-depth understanding of meniscus tissue formation through the process of differentiation. The influence of bioprinted scaffolds on extracellular matrix formation is evaluated non-invasively with time-lapsed micro-computed tomography. The co-efficient of friction of the bioprinted scaffolds is evaluated in a cartilage-meniscus tribological system.
Details
Projektzeitraum | 01.01.2022 - 31.12.2024 |
---|---|
Fördergeber | Bundesländer (inkl. deren Stiftungen und Einrichtungen) |
Förderprogramm |
|
Department |
Department für Gesundheitswissenschaften, Medizin und Forschung |
Projektverantwortung (Universität für Weiterbildung Krems) | Alexander Otahal, PhD MSc |
Projektmitarbeit |
Dr. Anna-Christina Moser
|
Publikationen
Moser, Anna-Christina; Fritz, Jennifer; Kesselring, Andreas; Schüssler, Florian; Otahal, Alexander; Nehrer, Stefan (2025). Biomechanical testing of virtual meniscus implants made from a bi-phasic silk fibroin-based hydrogel and polyurethane via finite element analysis. Journal of the Mechanical Behavior of Biomedical Materials, 162: 106830
Moser, Anna-Christina; Fritz, Jennifer (2023). Meniskusregernation durch 3D-(Bio)Druck. Jatros Orthopädie & Traumatologie Rheumatologie, 2: https://doi.org/10.
Vorträge
Formulation and biomechanical characterisation of a silk fibroin-based bioink for meniscus replacement via bioprinting
LBG Meeting for Health Sciences 2023, 02.11.2023
3D-Meniskus-Regeneration: Wie aus µCT Scans ein 3D gedruckter Meniskus werden kann
ICCB 2023, 20.09.2023
Formulation and biomechanical characterisation of a silk fibroin-based bioink for meniscus replacement via bioprinting
17th World Congress ICRS 2023, 10.09.2023
3D-Meniscus-Regeneration: From µCT imaging to 3D printing
17th World Congress ICRS 2023, 09.09.2023
3D-Meniskus-Regeneration: Wie aus µCT Scans ein 3D gedruckter Meniskus werden kann
GOTS 38th annual congress, 15.06.2023
Finite Element Analysis
AGA Denkfabrik, 26.05.2023
Menisc-3D-SilkPrint
M3d+it Conference, 02.12.2022
The potential of mulberry and non-mulberry silk fibroin bioinks for meniscus regeneration by 3D-bioprinting’
Joint KMM-VIN / ViCEM / ESB cross-disciplinary workshop, 22.09.2022
Cartilage derived extracellular matrix incorporated silk fibroin hybrid scaffolds for endochondral ossification mediated bone tissue regeneration
TERMIS EU 2022, 28.06.2022
The potential of mulberry and non-mulberry silk fibroin blends as bioinks for meniscus regeneration by 3D-bioprinting
TERMIS EU 2022, 28.06.2022
The potential of mulberry and non-mulberry silk fibroin blends as bioinks for meniscus regeneration by 3D-bioprinting
Summer school ‘Frontiers in Regenerative Medicine’, 23.05.2022