Daniel Novotny

Dr. Alexander Kovacs, MSc BSc

Zentrum für Modellierung und Simulation

Publikationen (Auszug Forschungs­datenbank)

Gusenbauer, M.; Stanciu, S.; Kovacs, A.; Oezelt, H.; Fischbacher, J.; Zhao, P.; Woodcock, T. G.; Schrefl, T.; Stanciu S. (2024). Micromagnetic study of grain junctions in MnAl-C containing intergranular inclusions. Elsevier Journal of Magnetism and Magnetic Materials, Vol. 606: 172390

Kovacs, A.; Exl, L.; Kornell, A.; Fischbacher, J.; Hovorka, M.; Gusenbauer, M.; Breth, L.; Oezelt, H.; Yano, M.; Sakuma, N.; Kinoshita, A.; Shoji, T.; Kato, A.; Schrefl, T. (2024). Image-based prediction and optimization of hysteresis properties of nanocrystalline permanent magnets using deep learning. Journal of Magnetism and Magnetic Materials, Vol. 596: 171937

Moustafa, H.; Kovacs, A.; Fischbacher, J.; Gusenbauer, M.; Ali, Q.; Breth, L.; Hong, Y.; Rigaut, W.; Devillers, T.; Dempsey, N. M.; Schrefl, T.; Özelt, H. (2024). Reduced Order Model for Hard Magnetic Films. AIP Advances, Vol. 14, iss. 2: 025001-1 bis 025001-5

Breth, L.; Fischbacher, J.; Kovacs, A.; Özelt, H.; Schrefl, T.; Brückl, H.; Czettl, C.; Kührer, S.; Pachlhofer, J., Schwarz, M. (2023). FORC diagram features of Co particles due to reversal by domain nucleation. Journal of Magnetism and Magnetic Materials 571 (2023) 170567 Available online 24 February 2023 0304-8853/© 2023 Elsevier B.V. All rights reserved.Contents lists available at ScienceDirect Journal of Magnetism and Magnetic Materials, Vol. 571: 1-6

Breth, L.; Schrefl, T.; Fischbacher, J.; Oezelt, H.; Kovacs, A.; Czettl, C.; Pachlhofer, J.; Schwarz, M.; Brueckl, H. (2023). Micromagnetic simulations as a tool for bottom-up explainability of FORC diagrams. Proceedings in AIM IEEE Advances in Magnetics 2023, Vol. 1: 1

Kovacs, A.; Fischbacher, J.; Oezelt, H.; Kornell, A.; Ali, Q.; Gusenbauer, M.; Yano, M.; Sakuma, N.; Kinoshita, A.; Shoji, T.; Kato, A.; Hong, Y.; Grenier, S.; Devillers, T.; Dempsey, N. M.; Fukushima, T.; Akai, H.; Kawashima, N.; Miyake, T.; Schrefl, T. (2023). Physics-Informed Machine Learning Combining Experiment and Simulation for the Design of Neodymium-Iron-Boron Permanent Magnets with Reduced Critical-Elements Content. Frontiers in Materials 2023, Vol. 9: 1-19

Okabe, R.; Li, M.; Iwasaki, Y.; Regnault N.; Felser, C.; Shirai, M.; Kovacs, A.; Schrefl, T.; Hirohata, A. (2023). Materials Informatics for the Development and Discovery of Future Magnetic Materials. IEEE Magnetics Letters, vol. 14: 1-5

Schaffer, S.; Schrefl, T.; Oezelt, H.; Kovacs, A.; Breth, L.; Mauser, N.J.; Suess, D.; Exl, L. (2023). Physics-informed machine learning and stray field computation with application to micromagnetic energy minimization. Journal of Magnetism and Magnetic Materials, 576: 170761

Yamano, H.; Kovacs, A.; Fischbacher, J.; Danno, K.; Umetani, Y.; Shoji, T.; Schrefl, T. (2023). Efficient optimization approach for designing power device structure using machine learning. Japanese Journal of Applied Physics, Vol. 1: 1-17

Ali, Q.; Fischbacher, J.; Kovacs, A.; Oezelt, H.; Gusenbauer, M.; Yano, M.; Sakuma, N.; Kinoshita, A.; Shoji, T.; Kato, A.; Schrefl, T. (2023). Benchmarking for systematic coarse-grained micromagnetics. In: HMM, proceedings in 13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023): 1, HMM, WIen

Gusenbauer, M.; Oezelt, H.; Kovacs, A.; Fischbacher, J.; Zhao, P.; Woodcock, T.-G.; Schrefl, T. (2023). Magnetization reversal of large granular magnetic materials. In: HMM, proceedings in 13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023): 1, HMM, Wien

Kovacs, A.; Fischbacher, J.; Oezelt, H.; Ali, Q.; Gusenbauer, M.; Schrefl, T. (2023). Finite Hex Element Adaptive Mesh Refinement of Demagnetizing Field Computation. In: HMM, proceedings in 13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023): 1, HMM, Wien

Oezelt, H.; Kovacs, A.; Breth, L.; Gusenbauer, M.; Schaffer, S.; Exl, L.; Schrefl. T. (2023). Machine learning based optimization of hard-/soft magnetic nanostructures. In: HMM, proceedings in 13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023): 1, HMM, Wien

Wager, C.; Kovacs, A.; Schrefl, T. (2023). Active Learning Scheme vs Conventional Optimization - developing a Python Framework. In: HMM, proceedings in 13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023): 1, HMM, Wien

Breth, L.; Fischbacher, J.; Kovacs, A.; Oezelt, H.; Schrefl, T.; Czettl, C.; Kuehrer, S.; Pachlhofer, J.; Schwarz, M.; Weirather, T.; Brueckl, H. (2023). Structural and micromagnetic modeling of the magnetic binder phase in WC-Co cemented carbides. IEEE International Magnetic Conference - Short Papers, 2023: https://doi.org/10.1109/INTERMAGShortPapers58606.2023.10304872

Kovacs, A.; Exl, L.; Kornell, A.; Fischbacher, J.; Hovorka, M.; Gusenbauer, M.; Breth, L.; Oezelt, H.; Yano, M.; Sakuma, N.; Kinoshita, A.; Shoji, T.; Kato, A.; Schrefl, T. (2022). Conditional physics informed neural networks. Communications in Nonlinear Science and Numerical Simulation, Vol. 104: 106041

Kovacs, A.; Exlc, L.; Kornell, A.; Fischbacher, J.; Hovorka, M.; Gusenbauer, M.; Breth, L.; Oezelt, H.; Praetorius, D.; Suess, D.; Schrefl, T. (2022). Magnetostatics and micromagnetics with physics informed neural networks. Journal of Magnetism and Magnetic Materials, Vol. 548: 168951

Gusenbauer, M.; Kovacs, A.; Özelt, H.; Fischbacher, J.; Zhao, P.; Woodcock, T.G.;Schrefl, T. (2021). Insights into MnAl-C nano-twin defects by micromagnetic characterization. Journal of Applied Physics, 129(9): 093902

Gusenbauer, G.; Oezelt, H.; Fischbacher, J.; Kovacs, A.; Zhao, P.; Woodcock, T. G.; Schrefl, T. (2020). Extracting local switching fields in permanent magnets using machine learning. npj Computational Materials, 6: 89ff

Kovacs, A.; Fischbacher, J.; Gusenbauer, M.; Oezelt, H.; Herper, H. C.; Vekilova, O. Y.; Nieves, P.; Arapan, S.; Schrefl, T. (2020). Computational design of rare-earth reduced permanent magnets. Engineering, 6: 148

Mehr laden
von

Vorträge (Auszug Forschungs­datenbank)

Experiments and simulations for physics-informed machine learning to design nedoymium-iron-boron permanent magnets

Joint European Magnetic Symposia (JEMS 2023), 31.08.2023

Magnetization reversal of large granular magnetic materials

HMM 2023, 05.06.2023

Finite Hex element adaptive mesh refinement of demagnetizing field computation

13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023), 05.06.2023

Physics Informed Machine Learning for Permanent Magnet Design

IEEE International Magnetics Conference INTERMAG 2023, 18.05.2023

Multiscaling strategies in computational magnet design

Going Green – CARE INNOVATION 2023, 11.05.2023

Recent activities on the applications of machine learning in micromagnetics

IEEE Advances in Magnetics (AIM2023), 17.01.2023

From chemical composition and temperature to micromagnetic anisotropy and vice-versa

67th Annual Conference on Magnetism and Magnetic Materials (MMM 2022), 02.11.2022

Classification and optimization of a magnet’s microstructure

CMAM 2022, 31.08.2022

Machine Learning for Relating Structure and Coercivity of Permanent Magnets

Virtual REPM 2021, 09.06.2021

Classification and optimization of a magnet’s microstructure

64th Annual Conference on Magnetism and Magnetic Material, Las Vegas, USA, 06.11.2019

Micromagnetic characterization of MnAl-C using trained neural networks

JEMS2019, Uppsala, Schweden, 29.08.2019

Ferromagnetic resonance simulations for stochastic Landau-Lifshitz-Gilbert equation

The Joint European Magnetic Symposia (JEMS), Uppsala, Sweden, 29.08.2019

Materials and Device Optimization in Micromagnetic Systems

61st Annual Conference on Magnetism and Magnetic Materials - MMM 2016, New Orleans, Louisiana, USA, 31. Oct. - 4. Nov. 2016, 02.11.2016

Zum Anfang der Seite