Beschreibung
Hartmetalle (engl. cemented carbides) finden heutzutage ein breites Anwendungsspektrum und werden entsprechend ihren Aufgaben maßgeschneidert. Hartmetall kann nur pulvermetallurgisch hergestellt werden. Über die Zusammensetzung und die Körnigkeit von Carbid-Material, Metallbinder und eventuellen Additiven werden die mechanischen Eigenschaften eingestellt. Neben Härteprüfung, Dichtetest, Analyse der Struktur und Porosität werden routinemäßig zerstörungsfreie Messungen der Magnetisierung und der Koerzitivfeldstärke zur Qualitätskontrolle gemäß DIN-ISO 3326 herangezogen. Diese magnetischen Eigenschaften liefern Rückschlüsse auf die Struktur, Zusammensetzung und Verunreinigung im gesinterten Zustand. Obwohl bei der Bewertung auf sehr viel Erfahrung zurückgegriffen wird, sind die Messergebnisse in binären bzw. ternären Systemen mit zudem komplexen Herstellungsprozessen oft nicht eindeutig interpretierbar.
Dieses Vorhaben zielt darauf ab, die magnetische Charakterisierung von Hartmetallen und deren Aussagen zu strukturellen und mechanischen Eigenschaften genauer, sicherer und eindeutiger zu gestalten. Zusätzlich zu den traditionellen Messungen der M(H)-Hysterese sollen moderne Methoden wie First-Order-Reversal-Curve (FORC) Analyse und Künstliche Intelligenz (KI) für FORC-Diagramme hinzugefügt werden, welche die Interpretierbarkeit quantitativer und eindeutiger gestalten werden.
Heutige Magnetometer erlauben es, FORC-Messungen in vernünftiger Zeit von wenigen Minuten durchzuführen. Diese liefern zusätzliche Aussagen über Phasenbildung und Verunreinigungen im Pulver und im gesinterten Zustand. FORC-Diagramme sind trotz großer Erfahrung nicht einfach zu interpretieren. Ein bisher nicht genutzter Ansatz soll helfen. Wir wollen die FORC-Diagramme mit Hilfe Künstlicher Intelligenz interpretieren lassen. Nach einer Anlernphase erwarten wir quantitative Aussagen zu Struktur, Zusammensetzung, Phasenbildung und Verunreinigung, sowie zu mechanischen Eigenschaften wie Härte, Zugfestigkeit, etc. Unterstützt werden die genannten Verbesserungen durch (mikro-)magnetische Simulationen. Diese können zum einen FORC-Diagramme von Modellsystemen berechnen und dem Deep-Learning-Algorithmus (oder ähnliches: z.B. Random Forest) zur Verfügung stellen, zum anderen können experimentelle Daten (M(H) und FORC) physikalisch interpretiert werden.
Details
Projektzeitraum | 01.04.2020 - 31.03.2023 |
---|---|
Fördergeber | FFG |
Förderprogramm | |
Department | |
Projektverantwortung (Universität für Weiterbildung Krems) | Univ.-Prof. Dr. Hubert Brückl |
Projektmitarbeit |
Team
Publikationen
Breth, L.; Fischbacher, J.; Kovacs, A.; Özelt, H.; Schrefl, T.; Brückl, H.; Czettl, C.; Kührer, S.; Pachlhofer, J., Schwarz, M. (2023). FORC diagram features of Co particles due to reversal by domain nucleation. Journal of Magnetism and Magnetic Materials 571 (2023) 170567 Available online 24 February 2023 0304-8853/© 2023 Elsevier B.V. All rights reserved.Contents lists available at ScienceDirect Journal of Magnetism and Magnetic Materials, Vol. 571: 1-6
Vorträge
Machine learning based prediction of mechanical properties of Co-WC cemented carbides from magnetic data only
ICM 2024, 05.07.2024
Interpretation ambiguity in FORC diagrams
Joint European Magnetism Symposia Conference JEMS 2022, 28.07.2022
FORC diagrams of hcp-Co particle ensembles from micromagnetic simulations
IEEE Advances in Magnetism (AIM) 2020+2021, 15.06.2021
FORC investigations of large-scale nano-ellipses arrays
AIM 2021, 15.06.2021
Using a Random Forest Regressor to predict First Order Reversal Curves of hcp-Co particle ensembles
Intermag 2021, 26.04.2021